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SUMMARY

It is often the case that the numerical simulation of two phase �ows leads to a number of di�culties
associated with the solution algorithms utilized. Those di�culties manifest themselves as an impossibility
to converge the iterative solution process, typical of the �nite-volume pressure-correction methods, and
are particularly persistent in cases with phase segregation (complete, or almost complete, separation of
one phase from the other) and with �ne meshes. A number of e�ective measures to overcome such
problems are here proposed and tested, encompassing: (1) modi�cation of the momentum equations
formulation in a way that avoids singularity as volume fractions (�) tend to zero; (2) bounding of the
volume fractions during the iterative algorithm in a way that enforces the physical limits, �¿0 and
61; (3) symmetric treatment of some terms in the equations, and consistent formulation of cell-face
�uxes in order to prevent numerical-induced oscillations. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical modelling of two phase �ows using the Eulerian approach is one in which both
phases are treated as interpenetrating continua and suitably averaged momentum equations are
solved for both [1]. In this study we examine, from a numerical perspective, the behaviour
of a typical �nite-volume algorithm for the solution of the Eulerian equations for two phase
�ow. By ‘typical’ we mean pressure-based, iterative algorithms similar to that described in
previous work [2], which in many ways descends from the early IPSA algorithm of Spalding
[3]. Recent representative applications of that type of algorithm are given in the work of
References [4, 5].
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1178 P. J. OLIVEIRA AND R. I. ISSA

Experience with iterative two-phase �ow algorithms (for example Reference [2]) has invari-
ably led to numerical problems, especially when there is segregation of the phases or when
recirculation zones occur. In practical terms the outcome is the impossibility to converge the
iterative-like procedure used to solve the sets of discretized equations. Often convergence
is hindered due to the inability to solve the equations to the prescribed tolerance in only
a few problematic cells of the mesh, but the solution is otherwise achieved in most of the
computational domain. Lack of robustness is also observed when the computational grid is
re�ned.
The purpose of this work is to investigate some of the key numerical issues which a�ect

the robustness of two-phase algorithms and to devise and test various procedures designed to
improve algorithm performance. In particular, the following issues have been studied:

• Behaviour of the velocity �eld for each phase as the volume fractions go to zero. The
standard formulation for the momentum equations becomes singular in that limit, so the
resulting velocities can �uctuate widely in the regions where volume fractions tend to
vanish. This causes numerical problems, especially at the boundary between regions of
segregated phases.

• Boundedness of the volume fraction �eld, especially as the volume fraction tends to one
of its physical limits (zero or one). This issue is related to the choice of equations solved
to obtain the volume fractions, as will be discussed in the paper.

• Behaviour of the algorithm with mesh re�nement. One of the important requirements
of a generally applicable algorithm is ‘robustness’, when �ne computational meshes are
used to obtain numerically resolved solutions.

• Capability of the algorithm to handle phase segregation.

The proposed remedies have been tested and veri�ed for several test cases which exhibit
the �ow features above and the results of these tests are presented.

2. DIFFERENTIAL EQUATIONS

In this section the standard form of the averaged momentum equations comprising the Eulerian
two-�uid model for two-phase �ows are given �rst, and then the steps required to obtain a
working set of equations, after division of each by its volume-fraction, are explained. The
�nal form of the governing equations are listed at the end of the section.

2.1. Basic governing equations

The basic averaged equations are those representing conservation of mass and momentum for
each phase k (c for continuous and d for dispersed):

@
@t
�k +∇ · �kuk =0 (1)

@
@t
�k�kuk +∇ ·�k�kuk ⊗ uk =∇ · �kTk + �k�kg +Mk (2)
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NUMERICAL MODELLING OF TWO-PHASE FLOWS 1179

The averaging procedure and the resulting equations are by now relatively well established
[1] although some di�erences may arise due to the detailed treatment of the interphase terms.
In Equations (1) and (2), u is a phase averaged velocity, g is the acceleration of gravity, � is
a volume fraction, and both phases are assumed to have a constant density �. The total stress
tensor is decomposed into an isotropic pressure term and an e�ective (molecular + turbulent)
deformation stress as:

Tk =−pk�+ �k (3)

where � is the identity tensor. The interface momentum transfer term can be decomposed into
drag (D), virtual mass (VM) and an interface-average stress contribution (I), denoted by a
corresponding superscript, as

Mk =MD
k +M

VM
k +M I

k (4)

with

MD
k =Cf [�k�̂k(ûk − uk)− �k∇�k]

(
Cf = 3

4

�cCDur
dp

=
18�cf(Rep)

d2p

)
(5)

MVM
k = �cCVM�k�̂k

(
Dûk
Dt

− Duk
Dt

)
(6)

M I
k =

∫
Ai
Tki · nk da=−Tki ·∇�k =pki∇�k − �ki ·∇�k (7)

where the symbol ˆ denotes the other phase and index i refers to interface (of area Ai).
Other interface forces are known to arise and be signi�cant in some circumstances, such as
lift or history forces, but their e�ect on the numerical behaviour of the algorithm has not
been considered here. Furthermore, since the objective was to study numerical aspects of
the solution procedure, simple models have been used for the phasic interactions, although
they assume the usual forms which lead to numerical di�culties. The drag was assumed
to follow the standard curve (e.g. Reference [1]) for drag around a sphere of diameter dp,
namely CD = (24=Rep)f(Rep) with the function f(Rep)=1 + 0:15 Re0:687p , where the particle
Reynolds number is de�ned in terms of the relative velocity ur = |ud − uc| and the continuous
phase viscosity �c, as Rep =�curdp=�c. Also [6, 7], the instantaneous drag gives rise to a
turbulent drag term, proportional to the eddy di�usivity (�k = �tk =��=�

t
k =�k��, with ��=0:71)

in Equation (5).

2.2. Alternative form of the equations

As mentioned earlier, in the limit of �k → 0, the momentum equation for phase k becomes
singular. Division of the momentum equations by �k leads to well-behaved velocity �elds
in the limit of vanishing velocity of the other phase; in the absence of �ow-induced ac-
celerations, the velocity of either phase will then tend to the corresponding ‘terminal
velocity’. If the momentum Equations (2) are expressed in non-conservative form (by
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di�erentiating the convection terms; see e.g. Reference [8]) and then divided by �k we
obtain

�k
Duk
Dt

=−∇pk +∇ · �′k − 2
3 �k∇kk + �kg −Ak

∇�k
�k

+ �̂kCf (ûk − uk)

+ �̂k�cCVM

(
Dûk
Dt

− Duk
Dt

)
(8)

where

Ak =−(pki − pk) + Cf�k (9)

is a dispersion coe�cient. In Equation (8) it is assumed that �ki= �k , but a di�erence between
the average phase stress and its interfacial average could be included. The e�ective stress is
linearly related to the strain rate via a Boussinesq relationship, with the e�ective viscosity
being the sum of molecular and turbulent contributions (to be obtained from the k–� turbulence
model), �ef =�+ �t . In arriving at Equation (8) the stress was decomposed as

�k = �′k − 2
3 �kkk� (10)

where k is the turbulence kinetic energy, and:

�′k =�
ef
k (∇uk +∇uTk − 2

3 ∇ · uk�) (11)

The normal turbulent stress is written separately (using the stress deviator �′) because it is an
important factor for phase dispersion and may be subjected to speci�c numerical treatment.
It is noted that the simpli�cations leading to Equation (8) were possible because the inter-

face forces (drag, Equation (5), and virtual mass, Equation (6)) were assumed to be propor-
tional to the product of both volume fractions, �k�̂k . Not all authors make that assumption,
but there are physical arguments to justify it. In fact, the drag acting on a phase k (�rst term
on right-hand side of Equation (5)) should vanish when the ‘other’ dragging phase is not
present (�̂k → 0), and also when there is nothing to drag, that is �k → 0. Such ‘symmetric’
feature of the drag coe�cient with respect to either phase was recognised as early as 1975 by
Harlow and Amsden [9] (see their Equation (6)); later, in 1987, Spalding [10] used a similar
symmetry in his development of a two-�uid turbulence model.
A more quantitative argument can be given. Consider a steady up�ow of bubbles in a

liquid (hence �c¿�d; ��≡�c − �d) under fully developed conditions, when the pressure
gradient balances the e�ects of drag and buoyancy. The momentum equations reduce to (from
Equations (2) and (5)):

0 =−�c @p@x + �c�dCf (ud − uc)− �c�cg

0=−�d @p@x + �c�dCf (uc − ud)− �d�dg

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1177–1198



NUMERICAL MODELLING OF TWO-PHASE FLOWS 1181

If the �rst equation is multiplied by �d, the second by �c, and the two are subtracted, we
obtain for the relative velocity (ur ≡ ud − uc):

Cfur = g��

For a linear Stokes drag (low Rep, so f(Rep)→ 1 in Equation (5)) this equation yields
ur = g��d2p=18�c, and for non-linear drag (high Rep, constant drag coe�cient CD) ur =√

4
3 dpg��=�cCD. So we see that the relative velocity is independent of the concentration

(�d or �c), as it should unless a re�ned drag modelling was employed. If the drag force were
proportional to �dCf and not to �c�dCf , then the relative velocity in this simpli�ed situation
would be proportional to �c (or

√
ac at high Rep), a clearly incorrect result.

A consequence of the present manipulation is that the only problematic term
remaining, when �k → 0, is the interfacial term proportional to ∇�k=�k . It is required that
the gradient of � goes to zero faster than �k , as �k → 0. Numerically, it is easy to dis-
cretise this term in such a way that no division by a zero �k will occur (it su�ces to
represent the � in the denominator of ∇�=� by the average of cell face �′s). This is
obviously a much simpler question than the original problem of a singular equation
0=0. Physically, the fact that this modelled term remains problematic after division by
�k might be an indication that some of the model assumptions are incorrect and require
further study, a matter that goes beyond the present purposes (which are purely
numerical).

2.3. Special symmetric treatment of terms

In arriving at the �nal form of the momentum equations, from Equation (8), two terms deserve
special attention so that the resulting equations remain symmetric in relation to either phase.
We deal �rst with the gravity term and then with the normal stress term.
It will generally be assumed that the same static pressure acts in both phases, pk =p.

The gravity terms in the above equations are usually written in terms of a buoyancy term
appearing solely in the dispersed phase equation, after subtracting the weight of the
continuous phase from the static pressure. This manipulation leads to modi�ed pressure gra-
dient and body-force terms of the form (prior to division by the volume fraction):

continuous phase :

−�c∇�p
dispersed phase :

−�d∇�p− �dg�� (with ��=�c − �d)

(12)

where �p=p+�cgz+constant (z is the direction vertically upwards and g is the magnitude of
gravity). When there is no reason to treat one of the phases di�erently from the other, such
as in separated �ow regimes (strati�ed �ow, for example), it is better to use a symmetric
treatment and de�ne the modi�ed pressure as:

∇�p=∇p− g�m (with �m = �c�c + �d�d) (13)
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A manipulation similar to that above leads now to modi�ed pressure gradient and body–force
terms of the form (prior to division by the volume fraction):

continuous phase :

−�c∇�p+ �d�cg��
dispersed phase :

−�d∇�p− �d�cg��

(14)

The advantage of this new modi�ed pressure is that �p will not su�er any change of slope
across a strati�ed �ow.
In what relates to the turbulent normal stress term (the 2=3�∇k terms in Equation (8)) they

can be included into a modi�ed pressure in a symmetric way similar to that for the gravity
terms above. The original momentum equation has terms of the form:

−�k∇p− 2
3 �k�k∇kk

where it is assumed that the densities �k are constant. De�ne the modi�ed pressure as

∇�p=∇p+ 2
3(�c�c∇kc + �d�d∇kd) (15)

where the turbulent kinetic energies of the continuous and dispersed phases are kc and kd,
respectively. These are related to each other in the turbulence model employed in this work
by kd =Ckkc. Then the relevant terms in the equations become:

continuous phase :

−�c∇�p− �d�c 23∇(�ckc − �dkd)
dispersed phase :

−�d∇�p+ �d�c 23 ∇(�ckc − �dkd)

(16)

2.4. Final equations

After inserting the symmetric treatment just explained for the gravity and normal stress into
the momentum equations, we arrive at the following working form of the various governing
equations.
Momentum equation for the continuous phase

�c
Duc
Dt

=−∇p+∇ · �′c −
2
3
�d∇(�ckc − �dkd) + �dg��+Ac

∇�d
�c

+ �dCf (ud − uc) + �d�cCVM
(
Dud
Dt

− Duc
Dt

)
(17)
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Momentum equation for the dispersed phase:

�d
Dud
Dt

=−∇p+∇ · �′d + 2
3 �c∇(�ckc − �dkd)− �cg��−Ad

∇�d
�d

+ �cCf (uc − ud) + �c�cCVM
(
Duc
Dt

− Dud
Dt

)
(18)

with: Ac =Ad =Cf �t=�� (here it is assumed that pki=pk).
Continuity equation for the continuous phase:

@
@t
�c +∇ · �cuc = 0 (19)

Continuity equation for the dispersed phase:

@
@t
�d +∇ · �dud = 0 (20)

Equation of phase compatibility:

�c + �d = 1 (21)

Turbulence modelling is not the issue under study here, hence the equations governing the
transport of turbulent kinetic energy (k≡ kc) and its dissipation rate (�≡ �c) [6, 7] are merely
stated below. They are:

�c
Dk
Dt
=∇ · �

t

�k
∇k + (G − �c�) + Sk (22)

�c
D�
Dt
=∇ · �

t

��
∇�+ �

k
(C1G − C2�c�) + S� (23)

where G is the generation of turbulence kinetic energy and the various constants in the model
took standard values: �k = 1; ��=1:3; C1 = 1:44; C2 = 1:92. It should be noted that the original
transport equations for k and � have been divided by �c following a procedure similar to that
for the momentum equations. The source terms accounting for the presence of a dispersed
phase and its in�uence upon the continuous phase turbulence are:

Sk =2k�dCf (Ci − 1) + Cf �
t

��
∇�d
�c

· ur (24)

for the kinetic energy, where the mean slip velocity is ur = ud − uc, and
S�=2C3��dCf (Ci − 1) (25)

for the dissipation rate. In these turbulence modulation terms, the most important contribution
is related to the covariance or interaction coe�cient de�ned as Ci= u′d · u′c=u′c · u′c, where u′ are
velocity �uctuations. It is noted that the (Ci − 1)-term in these dispersed-phase-related terms
should be treated implicitly if Ci¡1 (case of solid particles in a gas); otherwise (gas bubbles

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1177–1198



1184 P. J. OLIVEIRA AND R. I. ISSA

in a liquid, Ci¿1), it should be left on the right-hand side of the equations. The dispersed
phase turbulent kinetic energy and viscosity are related to the continuous phase ones by means
of response functions:

kd =Ckkc and �td =C��
t
c

with

�t ≡ �tc =C�k2c =� (C�=0:09); �efc =�c + �c�tc and �efd =�d(�d + �
t
d):

In this work we have used C�=1, Ci = 1, C3 = 0 (no turbulent modulation terms) and Ck
followed an expression given by Reference [6]:

Ck =C2t ; with Ct =
3+ �

1 + �+ 2�d=�c
; �=

t�
tp

(
1 + 2

�d
�c

)

where t� is a time scale of the large eddies (typically t�=C�k=�, with C�=0:4) and tp is the
‘particle’ relaxation time (tp = (�d=Cf )(1 + CVM�c=�d), with CVM =0:5).

3. DISCRETISED EQUATIONS

In this section the discretized form of the governing equations, which is based on a standard
�nite-volume method, is given. The methodology developed to ensure that the volume fractions
remain bounded is then presented. This is a key point of the work and one that has received
little attention in the past, albeit being essential to ensure robustness of the numerical method.

3.1. Momentum equations and �uxes

A non-staggered mesh arrangement is utilized, following previous work [2]. All variables
(denoted 	) are stored at the centre of the control volumes over which the governing equations
are integrated, resulting in sets of linearized algebraic equations of the form

aP	P=
∑
F
aF	F + S	 (26)

where aF and aP are coe�cients accounting for convection and di�usion in�uences, from
any surrounding cell F onto the cell P in question, and S are source terms containing all
other in�uences (see e.g. References [11, 12]). The various systems of equations like (26) are
then solved sequentially with conjugate gradient methods for linear-equation sets. All this is
standard matter and the classical reference for the kind of �nite volume method we use is the
book by Patankar [11].
Following the �nite volume method, the implicitly discretised cell-centered momentum equa-

tions (at cell P), with implicit treatment of drag and virtual mass, is written in simpli�ed 1-D
fashion as

aPuP =
∑
F
aFuF − BP[�p]P − VPAP

[��]P
�P

+ �̂PCf ûPVP

+
(
�′V

t

)
P
u0P + S

′
u + �c�̂PCVM

∑
F
âCF (ûP − ûF) (27)
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NUMERICAL MODELLING OF TWO-PHASE FLOWS 1185

with the central coe�cient evaluated as

aP=
∑
F
aF +

(
�′V

t

)
P
+ �̂PCfVP (28)

where each neighbour coe�cient is composed by di�usion and virtual-mass corrected convec-
tion contributions

aF = aDF + a
C
F (29)

All the other terms on the right-hand side of Equation (27) are included into a momentum
source term and that equation is then solved as a matrix equation for u.
In the above equations, �′ ≡�(1 + �̂CVM�c=�) is an e�ective density corrected for virtual

mass e�ects, P is the cell in question, F are the neighbouring cells (6 in a general 3D problem,
4 in 2D), and S ′u is the source term containing all contributions not explicitly written (such
as buoyancy and normal turbulent stress terms, for example). [�p]P and [��]P are pressure
and void fraction di�erences evaluated at the cell centre. Note the conservative and consistent
formulation of the virtual-mass term, based on the convective coe�cients of the other phase
(here evaluated with volumetric �ow rates). VP is the volume of a cell, BP are cell surface
areas (evaluated at cell centre P), 
t is the time step and u0P is the velocity at the previous
time step. For clarity, the phase index was omitted from Equation (27) (it should be assumed
in all terms) and so two momentum equations like Equation (27) will exist for the two phases.
It is important to note that the volume fraction appearing in the denominator of the disper-

sion term, that multiplied by the A coe�cient, is evaluated as an average value over the cell
P, thus �P=

∑
f �f. Here �f are linearly interpolated cell face values and the face index f

varies from 1 to 4 in 2D, and 1 to 6 in 3D. In this way the problematic situation of over�ow
when �→ 0 is prevented.
Convection �uxes at a cell face (f, between P and F) are evaluated with face velocities

ũf de�ned from a special Rhie–Chow interpolation practice [2, 12], as

aPũf =
∑
F
aFuF − Bf[�p]f − VfAf

[��]f
(�P)f

+ �̂f �Cf ˆ̃ufVf

+
(
�′V

t

)
f
ũ0f + S ′u (30)

where the overbar denotes arithmetic average; the virtual-mass term is embedded into the
source term S ′u. Note that the gradient of � is evaluated directly at the cell face f (and not
by averaging), [��]f= �F − �P, and thus oscillations in � will be avoided.

3.2. Bounding of � and the various forms of the continuity equation

The volume fractions are obtained from solution of one of the continuity equations, either
Equation (19) or (20). The important question is how to ensure boundedness of �, i.e.
06�k61 for k=c or d. Early studies of this issue are found in Carver [13].

3.2.1. Standard method. One of the continuity equations, typically that for the dispersed
phase Equation (20), is discretized and solved as a transport equation for �≡ �d. This equation

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1177–1198
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is written in the linearized form

a�P�P=
∑
F
a�F�F + S� (31)

with coe�cients and source terms given by (a dispersed phase index is implied):

a+F
� = −F−

f+ a�F− = + F+f− (F +≡Max(F; 0);F − ≡Min(F; 0))

a�P =
∑
F
a�F +

V

t
+ (∇ · u)+

S� = −(∇ · u)−�0P +
V

t
�0P

(32)

A positive cell neighbour or cell face is here denoted F+ or f+ (e.g. east, north and top,
for the usual compass notation [11]), and a negative cell neighbour and face by F− and f−

(e.g. west, south and bottom). In arriving at Equations (32), the upwind scheme was used
to represent the convective �uxes and the area–velocity products are de�ned as Ff ≡ (Bũ)f
where Bf is a cell-face area. The other phase volume fraction is then obtained from Equation
(21), �c = 1 − �d. A consequence of upwinding is that all coe�cients in Equation (32) are
positive so this method guarantees that �d is bounded by zero (�d¿0) but does not guarantee
boundedness by 1. Higher order methods are also possible, and in fact are desirable to improve
the accuracy of the predicted volume fraction �eld and alleviate the problems introduced by the
numerical di�usion associated with upwinding. These methods should be implemented along
the spirit of the high resolution schemes (see e.g. Reference [14]) to guarantee boundedness
and, therefore, conclusions similar to those valid for the upwind scheme will hold.

3.2.2. Two-equation method. With this approach both phase continuity equations are solved
separately for the two phase fractions. Since it is easy to bound both volume fractions from
below (�d¿0 and �c¿0) using the standard discretisation schemes with the upwind scheme
(or a high resolution scheme), and since �d+�c = 1, then both �d and �c will be bounded by 1
at convergence. In order to exactly enforce this constraint, the volume fractions obtained from
solution of Equations (19) and (20), denoted �∗d and �

∗
c , are corrected by a factor f as

�d = f�∗d and �c = f�∗c (33)

Now, since �d + �c = 1, hence

f=1=(�∗d + �
∗
c ) (34)

Spalding [3] used a similar correction in early developments of his IPSA method but appear
to have abandoned it later. A minor point against this method is that it requires solution of
two continuity equations. However, due to upwinding, these equations are extremely easy to
solve and often one iteration of the CGS solver is su�cient to reduce the initial residuals to
below 0.5%. A second point is that the process is iterative in nature with convergence only
attained as f→ 1. This is not an issue in steady state calculations where iteration is utilized,
and is only a consideration in time-dependent applications.
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4. RESULTS

The reformulated momentum equations of Section 2 and the new method for obtaining the
volume fractions discussed in Section 3 have been implemented in a computer code. This
code is the same used in previous work [2] and is based on the �nite-volume method in non-
staggered meshes. We can then compare the numerical behaviour of the ‘new formulation’
(that explained in the previous sections) against the ‘old formulation’ (that of Reference. [2]),
especially in terms of convergence rate, robustness with mesh re�nement, and capacity to han-
dle a wide range of volume fractions in a given problem. In the old formulation the virtual
mass term was not included. This term is not problematic numerically but, in order to have
a comparison as fair as possible, the virtual mass term is switched o� in the new formu-
lation by setting CVM =0 for the test cases in which the two formulations are run side by
side.
The following three test cases have been considered:

(1) Turbulent bubbly �ow in an axisymmetric sudden expansion
(2) Turbulent high-void fraction bubbly �ow about a plane obstruction
(3) Strati�ed laminar �ow in a channel

4.1. Sudden expansion

The relevant dimensions for this problem were R1 = 25 mm, R2 = 50 mm (expansion ratio
R2=R1 = 2), inlet pipe length L1 = 25 mm and outlet pipe length L2 = 350 + 1000=1350 mm
(�rst section of length 350 mm was used to concentrate the mesh near the expansion). The
�ow was turbulent, with Re=�c2R1P �uc1=�c≈ 105, and the inlet pro�les for both the continuous
(liquid) and dispersed (gas) phases were obtained from the measurements of Bel Fdhila [15].
The average value of the void fraction � at inlet was ≈ 5% and the bubble diameter dp = 2mm.
In the experimental arrangement the �ow was vertically upwards which we take as direction
x (along the pipe axis) and so the only non-zero component of the gravitational acceleration
is gx= − 9:8 m=s2.

4.1.1. Mesh re�nement. Three meshes have been utilized, re�ned consistently (mesh dou-
bling) along both the axial and radial directions. Since the mesh is non-uniform in the axial
direction with higher concentration of cells closer to the expansion plane, doubling the mesh
requires taking the square-root of the geometrical expansion factors used to distribute the mesh
spacing (fx ≡ 
xi+1=
xi). In this way, the minimum spacing in a zone of non-uniform mesh is
e�ectively halved when going from a coarser to a �ner mesh. The mesh characteristics are
given in Table I, where fx refers to the mesh blocks (length 350mm) just downstream of the
expansion plane.
An idea of the �ner mesh (mesh-3) can be obtained from Figure 1, where contours

of the predicted void fraction (�) and turbulent kinetic energy (normalized by its maxi-
mum value) are also given, together with the mixture streamlines. These are evaluated by
adding the liquid and the gas volumetric �ow rates across a cell face, and summing the
contributions for each cell face from the axis of symmetry (r=0) to the desired radial
position (rj), thus �Mj =�Mj−1 + (�cũcjBfj) + (�dũdjBfj) (j denotes a position along the
radial direction and Bfj the corresponding cell face area). The streamfunction for the two-
phase mixture �M is then normalized by the total (liquid plus gas) inlet �ow rate and
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Table I. Meshes used for the sudden expansion case (NC: number of cells; 
x: cell size;
fx and fr : mesh expansion factors).

Mesh NC 
xmin=R1 fx fr

1 2200 0.1 1.01560 1.0
2 8800 0.05 1.00770 1.0
3 35200 0.025 1.00384 1.0

(a)

0.04

0.04

0.08

0.08

0.12

0.12

0.160.2

0.2

(b)

0.1
0.1

0.2
0.30.40.5

0.6

0.7 0.8 0.9

(c)

0.20.30.4
0.50.6

0.70.8
0.9

1
1

1 1 1 1 1 1 1 1 1

1.1

(d)

Figure 1. Predictions for the sudden expansion �ow (�ow is left to right, with gravity in
the opposite direction): (a) mesh, (b) void fraction contours, (c) turbulent kinetic energy

contours, and (d) mixture streamlines.

is arbitrarily set to zero at the symmetry axis. Figure 1 shows agglomeration of the gas
phase in the main part of the recirculating zone, where the turbulent kinetic energy also
shows its highest levels. The region just behind the step-wall is devoid of gas bubbles
(�≈ 0).
The e�ect of mesh re�nement upon the predicted pro�les of void fraction is shown in

Figure 2. There is good convergence with mesh re�nement except for the pro�le closer to
the expansion plane (x=70mm) where larger di�erences are seen in the predictions with the
coarser mesh (the local maximum of � at r=R1≈ 0:7 is due to the imposed inlet pro�le).
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Figure 2. E�ect of mesh re�nement on the void fraction pro�les.

4.1.2. New and old formulation. The main di�erences between the two are the division of
the momentum equations by � and the inclusion of the virtual mass term. The division by
� implies some di�erence on the stress terms (due to the approximation �ki= �k ; compare
Equation (2) with Equation (8)). In practice, the ‘old formulation’ solves the equations with
a stress (molecular plus turbulent) divergence term written as ∇ · (��), therefore assuming
that the interfacial stress vanishes, while in the ‘new formulation’ the term is �∇ · �, on the
assumption that the interfacial stress is equal to the bulk phase stress. In terms of the method
used to obtain �, the ‘old formulation’ uses the standard method (Section 3.2.1) while the
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(a) (b)

Figure 3. Decay of the residuals with the ‘old’ and the ‘new’ formulations. The old formu-
lation converges only when the turbulent drag (TD) term is switched o�. (a) Calculations

on mesh-1; (b) calculations on mesh-3.

‘new formulation’ can use either of two methods (Sections 3.2.1 and 3.2.2) for solving the
�-equation. This choice does not entail any signi�cant di�erence upon the solution, as will be
shown later.
For the predictions on the coarser and the �ner meshes, Figures 3(a) and 3(b), respectively,

show the decay of the u-momentum residuals as time-marching proceeds (the behaviour of
the other variables is similar). The �gure compares the residuals’ history with the two for-
mulations, and also with the old formulation when the turbulent-drag term in the dispersed
phase momentum equation is switched o� (second term in Equation (5)). Clearly, when this
term is present the old formulation cannot converge to the speci�ed tolerance (here 10−4) but
by switching it o� convergence can be achieved. The results without the turbulent-drag term
do exhibit, however, a much reduced level of bubble dispersion.
In the new formulation all terms are present and no convergence problems arise. This prob-

lem with the old formulation was traced back to the relative velocity which attains unphysical
high values just inside the area where �d ≈ 0 because the momentum equation is then singular
(or unde�ned 0=0). The drag function Cf in the turbulent-drag term contains the relative
velocity (cf. Equation (5)) and because that term is not multiplied by �d, it will become trou-
blesome for iterative convergence. For this case the problem is restricted to a few problematic
cells in that area.
A few comparison of volume fraction pro�les obtained with the new and old formulations

(using the same method for �) are shown in Figure 4(a) for mesh-1 and Figure 4(b) for
mesh-3 (the �nest). The di�erences seen in these �gures are a result of the approximation
�ki= �k ; they are small and only become signi�cant close to the expansion plane. In terms
of mean velocities the di�erences are even smaller, as shown in Figure 4(c) where pro�les
of the axial velocity component for the continuous phase, obtained on mesh-3 at the same
locations as before, are compared.
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(a) (b)

(c)

Figure 4. Comparison of three pro�les predicted with the ‘new’ and the ‘old’ formulations. Void fractions
based on the standard method. (a) Void fraction on the coarse mesh (mesh-1); (b) Void fraction on

the �nest mesh (mesh-3); (c) Axial velocity of continuous phase on the �nest mesh (mesh-3).

4.1.3. Bounding of volume fraction and method used to solve for �. In terms of accuracy,
Figure 5 shows three typical radial pro�les of � predicted on mesh-2 with the standard and
the two-equation method; both give essentially the same results.
In terms of robustness the various methods are applied to solve for �c, instead of �d, since

in this way the more problematic bounding from above (�61) can be assessed with this �ow
problem (due to the region where �d = 0). The results are summarized in Table IIwhich gives
the number of time steps to convergence (tolerances of 10−4 and 10−5) and cpu times.
As expected, the two-equation method requires somewhat higher execution times compared

with the existing (more 3.9% on the coarse mesh and 4.0% on the �ne mesh). However,
on the �ne mesh it performs very well, converging in the same number of time steps as
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Figure 5. E�ect on the predictions of the method used to obtain the volume fractions.
Calculations on the medium mesh (mesh-2).

Table II. Number of time steps and CPU times (sec) (given in parenthesis) for convergence
with the two bounding schemes for the sudden expansion.

Method Solve for: Mesh-1, Tol = 10−4 Mesh-1, Tol = 10−5 Mesh-3

Standard, 3.2.1 �d 698 (47.2) 815 (54.1) 3766 (8686)
�c 762 (60.0) ¿10000(640) ¿10000

Two-equations, 3.2.2 �d 698 (49.1) 815 (56.2) 3767 (9166)
�c 698 (49.1) 815 (56.2) 3767 (9166)

the standard method when solving for �d (when no upper bounding of �d is necessary). The
standard method fails to converge on the �ner meshes when solving for �c, the two-equation
method on the other hand performs identically well since it solves for both �c and �d.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1177–1198



NUMERICAL MODELLING OF TWO-PHASE FLOWS 1193

(a)

0.05
0.05

0.15 0.25

0.25
0.3

0.3

0.35
0.35

0.4
0.4 0.45 0.5

0.55

0.6
0.650.7

(b)

0.1

0.1

0.2
0.3

0.3

0.4

0.4

0.50.6

0.7 0.80.9

(c)

0

0.1 0.20.30.4
0.50.6 0.7

0.9

-0.005
-0.0100

(d)

Figure 6. Predictions for the �ow around an obstruction (�ow is left to right
and there is no gravity): (a) mesh, (b) void fraction contours, (c) turbulent

kinetic energy contours, and (d) mixture streamlines.

4.2. Flow around obstruction

In this problem a high void-fraction (inlet �=40%), two-dimensional, turbulent, air=water
mixture �ows in the absence of gravity around a planar obstruction in a channel (blockage
ratio H2=H =5, where H2 is the half-width of the channel and the half-width of the obstruction
is H =10 mm; see Figure 6(a). This �ow resembles that around impeller blades where large
zones of high void fraction are generated. The region in front of the obstruction (x60) is
devoid of bubbles (high pressure region) and the region behind the obstruction (x¿0) has
considerable bubble concentration but � is still far from 1 (�max≈ 74%). Due to this, the
matter of bounding � by 1 was studied indirectly by solving the equation for �c (which is 1
at the start of the calculations, and is also 1 in the high-pressure region of the �nal steady-state
solution, thus posing bounding problems).
Uniform inlet pro�les for volume fraction (�d = 0:4) and velocity (uc = 2m=s, ud = 2:2m=s)

were imposed at the entrance plane at x= −L1 (L1 = 250mm). The thickness of the obstruc-
tion was 2 mm and the region downstream was L2 = 500 mm long. The absence of gravity
leads to an increase in bubble concentration behind the obstacle.

4.2.1. Solution �elds and mesh re�nement. The meshes used are summarized in Table III
and a portion of the �ne mesh is given in Figure 6(a). The predicted �elds obtained on mesh-2
are shown for void fraction in Figure 6(b), and turbulent kinetic energy (normalised with its
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Table III. Characteristics of meshes used for the obstruction problem (NC-number of cells;

xmin: minimum cell size; fx and fy:expansion factors (fx ≡ 
xi+1=
xi).

Mesh NC 
xmin=H fx- max fy- max

1 3270 0.05 1.1295 1.0607
2 13080 0.025 1.0628 1.0299

maximum value, 0:370 m2=s2) in Figure 6(c), and mixture streamlines in Figure 6(d). The
most striking feature is the zone in front of the obstacle where the void fraction falls sharply
from 40% to zero. There is accumulation of bubbles behind the obstacle, in the recirculating
zone which extends up to XR=H =8:27 and also in the area of high turbulence kinetic energy
which develops in the shear layer behind the recirculation zone.
Several lateral pro�les of void fraction are shown in Figure 7 for the two computational

meshes. More mesh re�nement would be required for the pro�les closer to the obstacle
(namely at x=H =0:5 and 1) to be less sensitive to the mesh, whereas those further down-
stream show little di�erences for the these two meshes.

4.2.2. Bounding of volume fraction and equation used for �. The e�ect of the equation
used to solve for � on the accuracy of the results can be seen from Figure 8. This �gure
compares predictions of void fraction obtained with the standard (Equation (20)) and the two-
equation (Equations (33)–(34)) methods on the �ne mesh, at two locations upstream of the
contraction (x=H =−0:5 and −0, just upstream of the obstacle) and two locations downstream.
No di�erences can be distinguished in the �gure. A comparison of the � variation along the
centreline also show a lack of e�ect, with both methods predicting an identical recirculating
zone behind the obstruction, extending to a distance of 8:27H .
We examine now the relation between bounding method and robustness. The number of

time steps for convergence (to a tolerance of 10−4) are given in Table IV, as well as the
corresponding CPU times in seconds (in a DEC-10000 machine). In all cases the time step
was �xed at 
t=5× 10−4 s which gives an approximate local Courant number of 3.1 on
mesh-1 and 6.2 on mesh-2.
Table IV shows that the standard method fails to converge on both meshes when solving

for �c. The two-equation method does very well on either mesh and its performance matches
that of the standard method when the latter solves for �d.

4.3. Phase strati�cation in a channel

The development of strati�cation of gas and liquid laminar �ow is examined in a 2-D channel
of width H =10 mm and length L=100 mm (L=H =10). The density di�erence between the
two phases was chosen to be small (�c = 1000 kg=m3 and �d = 950 kg=m3) so as to minimize
numerical problems related to large discontinuities in pressure gradient at the interface. The
other properties have been carefully chosen to guarantee adequate development of the �ow
from the inlet condition of the two equally mixed phases (�d = 0:5), to a complete strati�cation.
Since the pressure drop is inversely proportional to the Reynolds number and should be
approximately equal in both phases, one should have �c �uc=�c =�d �ud=�d. The viscosities of
the two phases were �c =�d = 10−3 Pa s and the diameter of the ‘bubbles’ dp = 2mm, thus
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Figure 7. E�ect of mesh re�nement on the void fraction variation. Void
fraction based on the two-equation method.

implying a terminal velocity of ur0 = 0:0307 m=s. The inlet velocities of �uc-inl = 0:1 m=s and
�ud-inl = 0:105m=s give Re=1000 and the di�erent time scales of the �ow are: relaxation time
tp = 0:0909 s; relative or settling time tr =H=ur0 = 0:326 s; di�usion time tD =H 2=�c = 100 s;
convective time tC =L= �uc-inl = 1 s.

4.3.1. Solution �elds and mesh re�nement. Two uniform meshes with 50× 20 and 100× 40
cells have been utilized. The development of the lighter phase distribution is shown in
Figure 9 (using the two-equation method). At the stations x=1 and 2 H from inlet, the
imposed inlet volume fraction of 0.5 is still seen in the central portion of the channel, but
further downstream the two phases have fully separated with the heavier phase �owing at the
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Figure 8. E�ect of the equation solved for � on the predicted void fraction.
Calculations on the �nest mesh (mesh-2).

Table IV. Number of time steps and cpu-time for convergence with the two bounding
schemes (obstruction �ow problem).

Method Solve for: Mesh-1 Mesh-1 Mesh-2 Mesh-2

Time steps cpu (s) Time steps cpu (s)
Standard �d 3635 380 4230 2408

�c ¿10000 ¿1060 diverge —
Two-equations �d 3615 345 4257 2547

�c 3615 345 4257 2547

bottom (�d = 0 for y=H¡0:5) and the lighter at the top (�d = 1 for y=H¿0:5). The slight
over/undershoots of � in the �rst pro�les are due to the problems arising from the Rhie–Chow
interpolation.
The predictions in Figure 9 are based on the �ner mesh of 100× 40 cells. With the coarser

mesh (50× 20 cells) the sharp interface between the regions of �d = 0 and 1 is less well
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Figure 9. Pro�les of void fraction at several stations along the channel. Calculations on the �ne mesh
and based on the two-equation method.

Figure 10. Residuals history with two-equation method on the �ne mesh.

resolved, otherwise most other features are unchanged. For the pro�le near outlet (x=H =10)
the interface is resolved in 2 cells with the �ne mesh.

4.3.2. E�ect of bounding scheme. Figure 10 shows the convergence history for several equa-
tion residuals: axial and radial momentum (uc and vc), and overall (gas plus liquid) mass
conservation. These show good convergence behaviour, while the standard method fails alto-
gether because of the e�ect of phase segregation.

5. CONCLUSIONS

The division of the momentum equations for each phase by the corresponding volume fraction
seems to lead to better convergence characteristics of the two-phase �ow algorithm. This
improved numerical stability is retained with re�nement of the computational meshes (very
�ne meshes were used in the two-dimensional test problems here presented). Some related
physical issues should be further investigated (e.g. should the stress term in the equations be
∇ · �� or �∇ · �).
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The two-equations bounding scheme, which solves the continuity equations for both phases,
showed excellent overall behaviour easily coping with extreme cases of fully segregated
phases.
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